The University of Texas at Austin
Electrical and Computer
Engineering
Cockrell School of Engineering

Fall 2021

ADVANCED TOPICS IN
COMPUTER VISION

Atlas Wang
Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

Why Transformer for Vision?

* Towards a general, conceptual
simple, and sufficiently versatile
architecture yet still achieving You doj¥{ have toreinvent
competitive performance for vision? the wheel.

* The inductive bias of CNNs, e.g.,

spatially invariant and locality-based,
also may not be sufficient ...

KEEP”™ .LAND INDEPENDENT
v

Basics: Transformer in NLP

= Standard model in NLP tasks
= Only consists of self-attention modules, instead of RNN
- Encoder-decoder

- Requires large dataset and high computational cost
= Pre-training and fine-tuning approaches : BERT & GPT

Output

Probabilities
|
| Softmax |
{
| linear |
(.)
| Add & Norm Je~
Feed
Forward
(SUSIUL e
- i ~ [Add & Norm J«~
> Add &_Norm) Multi-Head
Feed Attention
Forward F s N x
A
Nix | Add & Norm e
~—>| Add & Norm) VR
Multi-Head Multi-Head
Attention Attention
L J . .,
Positional Positional
Encodi ? & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Basics: Self-Attention

Embedding i g i £

| 56 the best
Input: LSC is the best!

g: query (giver)
" k: key (receiver)
ki=Wkal

3 v: value (info extractor)

Basics: Self-Attention

FLSC Mis] lthe Mbest)
Attentions Attentions Attentions Attentions
to all words to all words to all words to all words

[Cl1,1 Q12 A3 a1,4] [(12,1 Q22 Q23 (12,4] [a3,1 032 Q33 a3,4] [(14,1 Ola2 Ola3 (14,4]

qt -k’
Vd

d: dimension of q, k

G =

Ol1,1 Ol1,2 Ol1,3 Ol1,4
A — . 02 Oaa Ol2a

Attention Matrix Q3,1 Ol32 Ol33 O34
Qla,1 Ola,2 Qlaz Qlaa

Basics: Self-Attention

Attention A:
1 2 o
q q - We ata’ Q1,1 Q1,2 Q1,3
Q2,1 Q2,2 Q2,3 — ql q2

Oz Ola2 Olas

k2 k3 a2 a3
Output:
Ol1,1 Ol1,2 Ol13
v2 |3 32 b2 | b3 vZ|v3 Q2,1 022 Q2.3
Olz,1 Ol32 Olz3

Bringing Transformers into Computer Vision

- Only in local neighborhoods (1)

Image Transformer, ICML 2018
Stand-alone self-attention in vision models, NeurlPS 2019
On the relationship between self-attention and convolutional layers, ICLR 2020
- Exploring self-attention for image recognition, CVPR 2020
- Scalable approximations to global self-attention (2)

Generating long sequences with sparse transformers, arxXiv 2019

- Blocks of varying sizes (3)
Scaling autoregressive video models, ICLR 2019

- Only along individual axes (4)

Axial attention in multidimensional transformers, arXiv 2019
Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, ECCV 2020

Bringing Transformers into Computer Vision

- Combining CNN with self-attention (5)

- Attention augmented convolutional networks, ICCV 2019, image classification
- End-to-end object detection with transformers, ECCV 2020, object detection
Videobert: A joint model for video and language representation learning, ICCY 2019, video processing
- Visual transformers, arxiv 2020, image classification
- Unified text-vision tasks (6)
- VQA
- Image Retrieval
- OCR (Document Layout Analysis)

- Most Related Works (7)

- Generative pretraining from pixels (iGPT), ICML 2020
- Big Transfer (BiT): General Visual Representation Learning, ECCV 2020

DETR: End-to-End Object Detection with
Transformers (ECCV’20)

* DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a
transformer architecture. It does NOT rely on the many hand-designed components like in FasterRCNN.

-
o~ -

- »7
’ ’ -

;
\ transformer
CNN > > BN
Ll
[
[l

no object (o) no object (o)

encoder-
) decoder

set of image features set of box predictions bipartite matching loss

* The takeaway from DETR is bi-folds:

* DETR achieved comparable performance to Faster R-CNN, but not on par with more recent detectors (especially on small
objects), also requiring extra-long training schedule and auxiliary decoding losses

* DETR showed significant promise of generalizability, e.g., the same model easily applied to panoptic segmentation in a
unified manner

“Pure Transformer”: Visual Transformer (ViT, ICLR"21)

GIF from https://github.com/lucidrains/vit-pytorch

https://github.com/lucidrains/vit-pytorch

def forward(self, img, mask = None):
p = self.patch_size

= rearrange(img, 'b ¢ (h p1l) (w p2) —> b (h w) (pl p2
= self.patch_to_embedding(x)

Implementation

xX X

cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
= torch.cat((cls_tokens, x), dim=1)

x += self.pos_embedding

x = self.transformer(x, mask)

Vision Transformer (ViT)

MLP
] Head ZO x = self.to_cls_token(x[:, 0])
— T return self.mlp_head(x)
/ https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit pytorch.py#L99-1111

r

Transformer Encoder

Learnable Position Embedding

Epos = RWN+1)XD
Paﬁﬁgﬁegggéon Ea [ﬁ [ﬁto retain positional information

* Extra learnable
| | | | | | X, € RNX(P>C) XE € RNxD

(LY FI1]]]
S : -— i & |
R . m Eml,gﬁ ity g w E * Because Transformer uses constant

widths, model dimension , through all of its layers

Image x € RH*W*C — A sequence of flattened 2D patches x, € RVN<(P*C)

Implementation

def forward(self, img, mask = None):
p = self.patch_size

rearrange(img, 'b ¢ (h p1) (

self.patch_to_embedding(x)

x = torch.cat((cls_tokens, x), djm=1)

X += self.pos_embedding

x = self.transformer(x, mask)

x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)

class Transformer(nn.Module):

def

def

cls_tokens = self.cls_token.expand(#mg.shape[0], -1, -1)

__init__ (self, dim, depth, heads, mlp_dim):

super().__init_ ()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.appen®N nn.ModuleList ([
Residual(PreNorm¥&Jim, Attention(dim, heads = heads))),
Residual(PreNorm(di
1))

forward(self, x, mask = None):

FeedForward(dim, mlp_dim)))

for attn, ff in self.layers: Transformer Encoder

x = attn(x, mask = mask)
X = FFE(x)
return x

) {(pLp2 ¢c)';, pl =p;, p2 = p)

Multi-Head]
Attention

\ J
s \

Norm

o ———

-

Embedded

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py Patches

Implementation

class Attention(nn.Module):

def

def

[q) k7 V] = ZU kv

__init__(self, dim, heads = 8):
super().__init__()

self.heads = heads

self.scale = dim *x -0.5

7z € R¥*D : input sequence
qu‘v = RDX'?’Dh,

AERNXN

A = softmax (qkT/\/Dh)
SA(z) = Av. Attention weight A;; : similarity btw g*, K/

MSA(z) = [SA1(2); SA2(2); -+ ;SAk(2)] Umsa Unnsa € RF-PrxP

self.to_gkv = nn.Linear(dim, dim *x 3, bias = False)

self.to_out = nn.Linear(dim, dim)

forward(self, x, mask = None):

b, n, _, h = xx.shape, self.heads

gkv = self.to_gkv(x)

q, k, v = rearrange(gkv, 'b n (gkv h d) = gkv b h n d', gkv = 3, h = h)

dots = torch.einsum('bhid,bhjd->bhij"', q, k) * self.scale

if mask is not None:
mask = F.pad(mask.flatten(1), (1, @), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, float('-inf'))
del mask

attn = dots.softmax(dim=-1)

out
out

torch.einsum('bhij,bhjd->bhid', attn, v)
rearrange(out, 'b hnd = bn (hd)")
out = self.to_out(out)

return out https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py

Experiments

Ours Ours BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.36 87.61 £0.03 87.54 +0.02 88.4/88.5"
ImageNet Real 90.77 90.24 £+ 0.03 90.54 90.55
CIFAR-10 99.50 £ 0.06 99.42+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56 £0.03 97.32+0.11 96.62 +0.23 —
Oxford Flowers-102 99.68 + 0.02 99.74 +£0.00 99.63 + 0.03 —
VTAB (19 tasks) 7716 +£0.29 7591+0.18 76.29 4+ 1.70 —
TPUv3-days 2.9k 0.68k 9.9k 12.3k
mEN ViT-H/14 BiT-L (R152x4) WM VIVI(R50x3) W S4L (R50x1)
§ 88
7 .
S 80 85 I I
2 70
31 82
‘. I + i
- 70 i 80 ‘ |

VTAB (19 tasks)

Natural (7 tasks)

Specialized (4 tasks)

Structured (8 tasks)

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

Experiments

90

g \‘&\

S 85

g @

=

Q

2 ‘\

— 80- P

8« ®

F

Z 75 BiT @ ViT-L/32

(]

S o o ViT-B/32 ViT-L/16

= ViT-B/16 () ViT-H/14

70- T T T
ImageNet ImageNet-21k J FT-BOOR/I
Pre-training dataset Larger Dataset

Figure 3: Transfer to ImageNet. @ While

large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.

i 70 =
o e
= S
F
B 1601
z e
&
& 50 -
5
=
s 20
5 ViT-L/16 - ViT-B/32 ResNet50x1 (BiT)
2 *-ViT-L/32 ViT-b/32 -#®ResNetl152x2 (BiT)
5 B0

10 M 30 M 100 M 300

Number of JFT pre-training samples
Larger Dataset

Figure 4: Linear few-shot evaluation on Ima-
geNet versus pre-training size. ResNets per-
form better with smaller pre-training datasets
but plateau sooner than ViT which performs
better with larger pre-training. ViT-b is ViT-
B with all hidden dimensions halved.

Experiments

Average-5 S ImageNet
®
—_ ®
= g " €
= 951 @ -
§ ®e . Q¢
=
Q
& &
) - H
Z 80 -
E ® Transformer (ViT) 1 ® Transformer (ViT)
A ResNet (BiT) | ResNet (BiT)
Hybrid _ Hybrid
102 10° 10* 10° 103 10*

Total pre-training compute [exaFLOPs]

Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids.
Vision Transformers generally outperform ResNets with the same computational budget. Hybrids
improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

DelT: Data-efficient Image Transformers

* The first competitive convolution-free transformer
by training on Imagenet only

* Trained using a teacher-student strategy specific to
transformers

* |t relies on a distillation token ensuring that the
student learns from the teacher through
attention.

 When using CNN as teacher, the distilled model
outperforms its teacher in terms of the trade-off
between accuracy and throughput

LCE Eteacher
{ {
leOOoODOooOoOoOe !}

i

FEN

self-attention

i)
(Clnnnnninjn=c)
L S N Y N A A A |

class patch distillation
token tokens token

CvT: Convolutions into Vision Transformers

[:] MLP
Head
% D cls token
B - = o [
o : - (=} =l o =l
=] . m ~] . o —I]
ms 8 e 0 RS me|[] 58
— 3 = “ 3 — =
3 c o < 3 e o = 3 c R o=
T g S 0 g3 [:‘ S c o o
® 9 [:]*3: — 29 >3 = —> ® 3 + 3z
23 R 2 =8| [] B8 sa([|88
23 [] |28 Rg — =23 el
& : B e & - B
o = e [:, I oken map x; o I:] =
[:] Token map x,; D
Input image x; [:]
[:] Stage 2 Stage 3
Stage 1 (a)

* Each stage starts with a convolutional token embedding that performs an
overlapping convolution operation on a 2D-reshaped token map

* The linear projection prior to every self-attention block is replaced with a
depth-wise separable convolution as the projection

Swin Transformer (ICCV’21 best paper)

segmentation

class1ﬂcat10n detect1on cla351ﬁcat10n
/ / = //// Z/ .
etz

y e ~
e

(a) Swin Transformer (ours) (b) ViT

e Swin: hierarchical feature maps by merging image patches

* linear computation complexity to input image size due to computation of self-
attention only within each local window (using Shifted windows)

Swin Transformer: Pipeline Overview

¢ TN \ Ry 0D X
g i BISDS AR
! 1
H_W H_ W H_ W H,W H_W I ! I !
X x48 IxTxC 2 x5=x2C To X6 x4C X5 x8C | ! M;P] M*P !
— o , W wm wm wm em em em e e e — - - - - - - - - o e e]
4 Stage 1 s Stage 2 ? Stage 3 4 Stage 4 % 1o o :
'1 age \I : age \l II age \' Il age ‘I I : LN ! 1 LN :
! o0 (") ': (" AR 3 N = AR A : : 4 1
el ' | .5 o i 1| oen ! ' 1
Al (N ! 1A+ D
HxwWx3 2|1 |2 . THE:! . | B . ! ! : v 2 (D v | 2D !
El | 2 Swin 5 Swin i | Swin 0 8 Swin . : : ' ;
Images [P £ —:—) 5 —»| Transformer —:—:) = PP Transformer ':—:) = PP Transformer o = P Transformer»> !+ |W-MSA ' : SW-MSA 1
Sl | = Block |5 Block 1 |8 Block e Block L £ ' ' A :
e~ S 1! = 1 | = ! = ! ! !
3] 11 ! 1 1 1
Al | LE o L= T L LN ! : LN !
' 2] & 2o Q g - J i - AL § oS . 7 I
‘e X2 Ny X2 RN X6 "\ X2 s '_z_ L \,_f_____,'

(a) Architecture

(b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Swin Transformer: Shifted Window

Layer | Layer I+1
A local window to
perform self-attention
>
A patch
. r _ [masked] - A C
E MSA ||

= 1 . B B

masked| | ,

window partition Cl A -~

cyclic shift reverse cyclic shift

TimeSformer: ViT for Video

Time Att.

20
’ Joint Space-Time Divided Space-Time Sparse Local Global Axial Attention
Space Aiention (3) Attention (ST) Attention (T+S) Attention (L+G) (T+W+H)

Figure 1. The video self-attention blocks that we investigate in this work. Each attention layer implements self-attention (Vaswani et al.,
2017b) on a specified spatiotemporal neighborhood of frame-level patches (see Figure 2 for a visualization of the neighborhoods). We use
residual connections to aggregate information from different attention layers within each block. A 1-hidden-layer MLP is applied at the
end of each block. The final model is constructed by repeatedly stacking these blocks on top of each other.

TimeSformer: ViT for Video

W A I
RS
1 144
15

I A 1
o o S5 M
EEmT
| e
B i 1l
DS
(1 s 1 s
| Al | Al

Joint Space-Time Divided Space-Time Sparse Local Global Axial Attention
Attention (ST) Attention (T+S) Attention (L+G) (T+W+H)

—
—
e
-

framet- &

frame t

EEE: EEEE
EEEEE
ENENENEEE

FHENFEENSES
3
HIFENEE ANE=

% HERNE NNE
NE=EAEERNE
HEESERE BERE
D% NN NNE-
EENNEERREE

frame t+ &

Space Attention (S)

Figure 2. Visualization of the five space-time self-attention schemes studied in this work. Each video clip is viewed as a sequence of
frame-level patches with a size of 16 x 16 pixels. For illustration, we denote in blue the query patch and show in non-blue colors its
self-attention space-time neighborhood under each scheme. Patches without color are not used for the self-attention computation of the
blue patch. Multiple colors within a scheme denote attentions separately applied along different dimensions (e.g., space and time for
(T+S)) or over different neighborhoods (e.g., for (L+G)). Note that self-attention is computed for every single patch in the video clip, i.e.,
every patch serves as a query. We also note that although the attention pattern is shown for only two adjacent frames, it extends in the
same fashion to all frames of the clip.

TimeSformer: ViT for Video

Table 2. Comparing TimeSformer to SlowFast and I3D. We ob-
serve that TimeSformer has lower inference cost despite having
a larger number of parameters. Furthermore, the cost of training
TimeSformer on video data is much lower compared to SlowFast
and I3D, even when all models are pretrained on ImageNet-1K.

Attention Params K400 SSv2
Space 859M 769 366 Method Top-1 Top-5 TFLOPs
Joint Space-Time 85.9M 774 58.5 R(2+1)D (Tran et al. 2018) 72.0 90.0 17.5
ivided Space-Ti 121.4 780 59.5 2 : ' .
Seeemiateien DugE 7500 58 bLVNet (Fan et al., 2019) 735 912 0.84
Axial 156.8M 735 56.2 TSM (Lin et al., 2019) 747 N/A N/A
. . . . S3D-G (Xie et al., 2018) 7477 934 N/A
Table 1. Video-level accuracy for different space-time attention Oct-I3D+NL (Chen et al., 2019) 757 N/A 0.84
schemes in TimeSformer. We evaluate the models on the valida- D3D (Stroud et al 2620) 75'9 N/A N A
tion sets of Kinetics-400 (K400), and Something-Something-V2 I3D+NL (Wang et al 2018b) 777 93.3 10.8
(SSv2). We observe that divided space-time attention achieves the ip-CSN-152 (Tran et al., 2019) 778 928 39
best results on both datasets. CorrNet (Wang et al., 2020a) 792 NA 67
_ _ LGD-3D-101 (Qiu et al., 2019) 794 944 N/A
Mogol Pretrain - K400 Training K400 Inference Params gt (Feichtenhofer et al., 2019b) 79.8 939 7.0
Time (hours) Acc. TFLOPs
13D 8x8 R50 ImageNet-1K 444 710 111 28.0M X3D-XXL (Feichtenhofer, 2020) 804 94.6 5.8
I3D 8x8 R50 ImageNet-1K 1440 734 111 28.0M :

SlowFast R50 ImaieNet-lK 448 70.0 1.97 34.6M TimeSformer 78.0 93.7 0.59
SlowFast RS0 ImageNet-1K 3840 756 197 34.6M TimeSformer-HR 797 944 5.11
SlowFast R50 N/A 6336 764 197 34.6M TimeSformer-L 80.7 94.7 7.14

TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M

Table 5. Video-level accuracy on Kinetics-400.

DINO: Selt-Supervised Learning with ViTs

Source: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/

https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/

DINO: Selt-Supervised Learning with ViTs

DINO: Self-Supervised Learning with ViTs

Supervised

A Debate: ViTs Should Go More Complicated or Less?

* Adding “convolution-like” inductive
bias and structures

* |Injecting convolution layers, pyramid
structure, dense connections, sliding
windows, multi-sized views or attention

windows ...

e ... Orjust, keep it simple and
“universal”?
* Always my personal preference
 Someone pushed it even further...

MLP-Mixer: Is there any “indispensable”?

oSS TSIt TSRS SRS TS S S S S SRS S Sk SAe SR Sns ST sl ove Ny
I Skip-connections Skip-connections Mixer Layer I
I ; [
: Channels i
I - > Patches y - MLP 2 Y > I
: E> < C —("MLP 1 }—» 5 MLP 2 I
A B z = —(MLP 1 }—» /T = MLP 2
I 5> s\ A3 - (MLP1 }—p 5 MLP 2 !
1 N 2 O L MLP1 }—p z MLP 2 I
I = > - MLP 2 = I
o e e e e s NS e e e s i e anent Dhe el ot dnen goock wiir sases BRIl J
Class

-connected e T T et
Fully-connected MLP

Global Average Pooling

[
R B

N x (Mixer Layer)

MMQMM

- Per pdl(,h Fully- connected
// ' D I
{ q ”‘/‘ " s e S o)
IR L s’

Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

(i:
I

MLP-Mixer: |s there any “indispensable”?

ImNet Real Avg5 VTAB-lk Throughput TPUvV3

top-1 top-1 top-1 19 tasks img/sec/core core-days il /;_'___;‘
Pre-trained on ImageNet-21k (public) [O . L
X
e HaloNet [51] 85.8 — — — 120 0.10k S S O
» Mixer-L/16 84.15 87.86 93.91 74.95 105 0.41k 8 =
® ViT-L/16 [14] 8530 88.62 94.39 272 32 0.18k = &)
BiT-R152x4 [22] 8539 — 9404 70.64 26 0.94k =
[®)]
Pre-trained on JFT-300M (proprietary) £ 50
Mi effﬁ o 2%4 90.18 9571 7533 jg ig?t : ' Mixer-B/32 VITB/32
® Mixer- i . . ’ . 10 T —— e \JiT.
BiT-R152x4 [22] 87.54 90.54 9533 76.29 26 9.90k 5 40, Mixer-L/32 VIT-L/32
o ViT-H/14 [14] 8855 90.72 9597 77.63 15 2.30k I ; -+ Mixer-l/16 —— ViT-l/16
: , —— BiT-R152x2
Pre-trained on unlabelled or weakly labelled data (proprietary) o =
MPL [34] 90.0 9112 — - 20.48k 10M 30M 100 M o0m ” 7 -38

ALIGN [21] 88.64 — — 79.99 15 14.82k Training Size

MLP-Mixer: |s there any “indispensable”?

 Surprise: while convolutions and attention are both sufficient for good
performance, neither of them are necessary!

* This architecture can be seen as a unique CNN, which uses (1x1)
convolutions for channel mixing, and single-channel depth-wise
convolutions for token mixing

 However, the converse is not true as CNNs are not special cases of Mixer

* |t has inspired crazy thoughts: maybe “sufficient information mixing” is just
all you need, regardless how you mix it (using whatever architecture...)

TransGAN: Two Transformers Make One Strong GAN

000---00 0 —I -
256x256x3 Grid Transformer Blocks §
2x AvgPool] i
000--00
Linear Unflatten D 0g0--00 »
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Concatenate l ”
() %5 ‘lﬁi" DD b
(256 x 256) X1C—6 Grid Transformer Blocks =
‘ Transformer Blocks o
2x UpScale
& Grid Transformer [2x AvgPool]
(128 x 128) x - Blocks 0000 5
. . goog g
. . [Concatenate | =
(—X—) C
Transformer [i m [i ﬁ
(le16)=IC il Transformer
[2x UpScale] Blocks J
Transformer E] ? L}] LI'] } CLS |
L
Transformer
gcog---0 Blocks
Noise Input Real / Fake ?
L Generator Discriminator

Stagei- 1
HxW)

Stagei-1
HxW)

N L]
ol 5]
s |
ARy S0
[T
[Fin | []

Stage 1 Stagei+ 1
(2H x 2W)

(a) Standard Self-Attention

Stage 1 Stagei+ 1
(2H x 2W) (4H x 4W)

(b) Grid Self-Attention

Data Augmentation Matters A LOT

METHODS DA IS FID |
WGAN-GP X 6.49 £ 0.09 39.68
(GULRAJANI ET AL., 2017) 4/ 6.29 £0.10 37.14
AUTOGAN X 8.55+0.12 12.42
(GONG ET AL., 2019) v 8.60 £0.10 12.72
STYLEGAN V2 X 9.18 11.07
- (ZHAO ET AL., 2020B) v 9.40 9.89
Color + Translation + Cutout 6.95 % 0.13 4141
X . . .
_____ update TRANSGAN J/ 815+0.14 19.85
X —> T(x)i,—> D(T(x))
R) — s
2= O mI(GE) > D(T(G(2)))
Other Useful Techniques:
update - Relative position encoding
_________ D —D(T(G(z))) - A Modified Form of Normalization

| 6 TG

Comparing with SOTA ConvNet-based GANSs

Table 1: Unconditional image generation results on CIFAR-10, STI-10, and CelebA (128 x 128)
dataset. We train the models with their official code if the results are unavailable, denoted as “*”,

others are all reported from references.

CIFAR-10 STL-10 CelebA

Methods

ISt FID] ISt FID| FID]
WGAN-GP [1] 6.49 +0.09 39.68 - - -
SN-GAN [46] 8.22 +0.05 - 9.16 +0.12 40.1 -
AutoGAN [18] 8.55 +0.10 12.42 9.16 +0.12 31.01 -
AdversariaNAS-GAN [18] 8.74 +0.07 10.87 9.63 +0.19 26.98 -
Progressive-GAN [16] 8.80 +0.05 15.52 - - 7.30
COCO-GAN [66] - - - - 5.74
StyleGAN-V2 [68] 9.18 11.07 10.21* +0.14 20.84* 5.59%
StyleGAN-V2 + DiffAug. [68] 9.40 9.89 10.31*+0.12 19.15%* 5.40*
TransGAN 9.02 +0.12 9.26 10.43 +0.16 18.28 5.28

Transformer Eats Data !

Visual Examples of TransGAN

. A4 /2 ~
i Y J Y by b N\ /] X 7/
. \ \ : b \ \ / \)
! ' ' i ; !
. F .) : \ 1.' Vi 1 i L ' ¢ N p | B
' ; : { .!) .v :v L f / ‘ ,
A < K > - : ! | > . L AN il
. : “ - .
A 4 ’ : . ./) o/ 1B : - 18 ‘\‘. i \ - Y o 14 |
§ 5 =" . = = Nl Nk N
3 f . & S o S " ,'. y ’,. o ~ o
: | d : 4 Ay }(.‘. v At\ I' ‘L‘\ //., | \ | \ \
‘_ | . A 7N N _'/\. N IA et/ A\

(a) Synthesized Image 5 (b) Interpolation on Latent Space \

Figure 1: Representative visual examples synthesized by TransGAN, without using a single con-
volution. (a) The synthesized visual examples on CelebA-HQ (256 x 256) dataset. (b) The linear
interpolation results between two latent vectors, on CelebA-HQ (256 x 256) dataset.

Multi-Modality: Video-Audio-Text Transformer (VATT)

V ATT . . Transformer Encoder Multimodal
Multimodal Projection Head i Projection Head
(L x @< video audio
feature feature
Transformer Encoder MLP LLITLT] LD
Modality-Specific OR Modality-Agnostic 4
Norm T‘CE
0ss

oo MOOOO0O O

s \
Modality-Specific Patch + Position Embedding] I\?o':lt':tei-r;'ig?\d | U
[Linear Projection] [Linear Projection] [Linear Projection] *_f_’ EDZE}MEEED
(3D RGB voxels) (1D waveform) | (1-hot word vectors) [Norm s D
: :' S8 - .4 .'-2. " e WMM “Sled dogs running on the (TITTT]
A . \ .‘.mm snow pulling the sled.” [Embedding \ =
Input Video Input Audio Waveform Input Text ’ feature

Figure 1: Overview of the VATT architecture and the self-supervised, multimodal learning
strategy. VATT linearly projects each modality into a feature vector and feeds it into a Transformer
encoder. We define a semantically hierarchical common space to account for the granularity of
different modalities and employ the Noise Contrastive Estimation (NCE) to train the model.

Other Ongoing ViT Studies ...

Better Optimization
Algorithms
(overcoming over
smoothening, etc.)

Robustness
(adversarial attacks,
domain shifts...)

Model Efficient Training &
Compression Transfer

Better Backbone: Scaling Up:
Neural ArChitECture Larger Data’ Mu|t|_

Search... Modality ...

Interpretability

‘NOW THIS IS NOT THE
END. IT IS NOT EVEN
THE BEGINNING OF
THE END. BUT IT IS,
PERHAPS, THE END OF
THE BEGINNING.”

Winston Churchill

&

The University of Texas at Austin
Electrical and Computer
Engineering

Cockrell School of Engineering

